صفائـــــح التدريـــــع .. عرقلـــــة أم امتصـــــاص
وهكذا يحرص المهندسون عند تصميم وتوزيع دروع دباباتهم وعرباتهم المدرعة ، على مواجهة شكلين مختلفين من أشكال التهديدات المحتملة ، قذائف الطاقة الحركية Kinetic Energy وقذائف الطاقة الكيميائية Chemical Energy . من ناحية تهديدات مقذوفات الطاقة الحركية ، فإنها تستخدم طاقة الاصطدام المرتفعة لتحقيق النفاذ ، والنوع الوحيد تقريباً الذي له القدرة على اختراق قوس برج الدبابة الأمامي الثقيل ، هو الخارق للدروع المثبت بزعانف النابذ للقبقاب APFSDS ، حيث يصمم المقذوف عموماً لتركيز مستوى مرتفع جداً من الطاقة الحركية على مقطع عرضي صغير لأقل ما يمكن على سطح الهدف لكي يتحقق الاختراق الأعمق . ولأن الطاقة الحركية للمقذوف تتعلق بشكل مباشر بكتلته ، فإن مصممو السلاح يجاهدون لزيادة الكثافة المقطعية sectional density للمقذوف ، التي تعرف بأنها كتلة المقذوف إلى منطقته العرضية (كقاعدة عامة ، المقذوف الأعلى في كثافته المقطعية ، الأعظم في قدرته على تحقيق اختراقات أعمق) . فمع انتقال وتحرك المقذوف بسرعات مرتفعة جداً ومفرطة hypervelocity ، فإن قوة مادة الدرع عند الارتطام تصبح مهملة ، حيث أن كلتا المقذوف والدرع سيذوبان ويتصرفان مثل السوائل ، وتصبح فقط كثافة المنطقة أو الكثافة السطحية Surface density هي العامل الأهم (المصطلح يشير لكل وحدة منطقة في كتلة جسم ما موزعة على السطح ، وهذه مصورة بالكيلوغرامات لكل متر مربع ، حيث يمكن إيجاد الكثافة السطحية بأخذ كتلة جسم وتقسيمه على منطقته) . في هذه الحالة المحددة ، المقذوف بعد اصطدامه بجسم الهدف سيواصل عملية الاختراق حتى يتوقف عن تحويل زخمه واندفاعه الحركي إلى مادة الهدف . في هذه الحالة المثالية يكون فقط ، الزخم ، مقطع المنطقة العرضي ، الكثافة ، والسماكة المنظورة هي العوامل ذات الصلة والمرتبطة بموضوع تتميم حالة الاختراق ..
وللتبسيط نقول أنه عند حدوث التماس المادي بين الخارق عالي السرعة وكتلة الهدف ، فإن الطاقة الحركية للقضيب ستحول كطاقة اصطدام إلى الهدف impact energy . وستتولد موجات اهتزازية/صدمية في الهدف وكذلك موجات صدمية انعكاسية reflected shock wave ستتولد على امتداد قضيب الخارق . كلا القضيب والهدف سيواجهان ويتحملان مستويات الضغط المرتفع في منطقة الاصطدام ، كما ستتولد موجات خلخله Rarefaction waves على جوانب منطقة الاصطدام . وبينما تتعرض المادة عالية القسوة للفك والتحرر خلال حركة تقدم قضيب الخارق ، فإن تدفق لدن plastic flow يمكن أن يحدث وأيضاً فشل أو إخفاق هيكلي للمادة كما عرضت النتائج . وبعد الاصطدام ، يمكن تمييز حفرة أو منطقة التأثير المشكلة (موضع اصطدام وارتطام الخارق) بواسطة حافتها البارزة ومركزها المخروطي المرتفع . في الحرب العالمية الثانية كانت القذائف المثالية الثاقبة للدروع على هيئة رصاصة bullet-shaped ، وكان لديها سرعة أوطأ بكثير مما تتحصل عليه القذائف في زمننا الحالي ، بحيث أن ارتطامها بالدرع لم يكن يؤدي لإنجاز حالة الذوبان للقذيفة والدرع . في هذه الظروف ، قوة مادة التدريع وصلادتها تصبح العامل الأهم ذو الصلة . فإذا كان المقذوف خفيف وبطيء نسبياً ، فإن قوة التدريع قَد تتسبب في تحصيل أضرار ربما لا تتجاوز حد التشويه المرن elastic deformation أو التشويه اللحظي ، بحيث تهزم القذيفة وتدحر دون أضرار فاعلة على كتلة الهدف .
اولا اشكرك اخي على اهتمامك بهذا الجانب ونشر الثقافة العسكري لدي سؤالين في هذا الجانب
ردحذفاولا ماهي المواد المستخدمة في صناعة انواع الدروع الممتصه و النشيطه ؟ ارجو ان تهتم لهذه النقطة وتجيبني عليها
ثانيا هل يستخدم نوعي التدريع معا في تدريع الدبابات و العربات المدرعة ام لا ؟
ثالثا هل يسهم الشكل الهندس للمدرعة في قدرتها على تحمل المقذوفات ؟
شاكر لكم و اعذروني على الاطالة مكنكم نتعلم
المواد عديدة أخي ، فهناك الطبقات المطاطية وألياف الزجاج والألياف النسيجية المركبة .. ولحد ما أخي فإن عمل هذه المواد ليس مختلف عن السيارات الحديثة والمتطورة ، حيث يمكنك إدراك كيف تقوم هذه بامتصاص معظم الطاقة في حالة اصطدام السيارة وهي مسرعة جداً وإنقاذ حياة الركاب . بالنسبة للسؤال الثاني ، نعم نوعي التدريع تستخدم في العديد من الدبابات والعربات المدرعة الأخرى . بالنسبة للشكل الهندسي بالطبع له دوره المؤثر ، فعند إصطدام المقذوف بجسم الهدف فإنه عرضة للإنحراف إذا كان موضع الإصطدام ضمن صفائح التدريع ذات الزوايا الحادة .
ردحذفاشكرك اخي على ردك و اهتمامك نفع الله بك وجعله في ميزان حسناتك
ردحذفاخي الكريم انور, لم نرى منك اي موضوع عن الدبابات التي جرى تطويرها في الدول العربية مثل الحسين الاردنية او الفونيكس.
ردحذف